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TECHNICAL NOTE 2029

THE INTERPRETATION OF BIAXTAI~-TENSION EXPERTMENTS
INVOLVING CONSTANT STRESS RATIOS

By S. B. Batdorf
SUMMARY

The slip theory of plasticity 1s applied to the problem of
calculating the strains associated wlth blaxlal tension for the case of
congtant stress ratlos and 1s found to be in better agreemsnt with
exporiment than the octahedral-ghear and maximm—shear theories
usually employed to analyze such data.

INTRODUCTION

The mathematical theory of plasticity is concermed with solving
over & wider stress range much the same sort of problem as that treated
in the elastic range by the theory of elasticity. To solve such
problems the stress-strain relations for the material must be known.
This requirement presents no particular obstacle in the solutlon of
problems in which only & single type of stress occurs, for the stress—
strain relations for tenslon, compression, and shear are known or can
be establlished by standardized tests. However, the stiress-—strain
relations corresponding to combined stresses have not yet been definitely
egtablished.

Among the wide varlety of possible types of loading involving
combined stresses, the simplest case, from a theoretlcal point of view,
is that in whlch the stress ratlos and directions are kept constant.
Also, thls case corresponds approximately to the loading conditions
encountered in a number of structural applications.

The behavior of metals subjected to & two—dimenslional state of
gtressg in which the ratio and direction of the princlpal stresses are
held constant has been the gsubject of a large number of experimental
investigations. (For a few examples, see the biblliography at the end
of this paper.) The results have usually been interpreted in terms
of a generalized stress-gtrain curve in which & function of  the
applled stresses ls plotted against a function of the resulting strains.
These functions, which are sometimes called the stress intensity and
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gtrain intensity, or the effective stress and effective straln, reduce
gimply to the applied stress and the corresponding strain or a multiple
of them when only a single type of stress is present.

Recently a theory for the polyaxial stress relations in the plastlc
range was advanced which takes explicit account of the polycrystalline
nature of metals (reference 1). In this approach, which is based on
the assumptlon that—plastic deformatlon is due to slip within the
individual grains, concepte such as stress intensity and strain
intensity play no part.

The present paper ls concerned with the interpretation of blaxial—
tension experiments involving constant directlons and ratios of ‘the
stresses, from the point of view of the slip theory. A comparison 1s
made with the experimental results of W. R. Osgood (reference 2). This
experimental investigetion was selected because it includes data in the
regions of emall strain to which the slip theory in 1ts present form 1is
thought to be applicable (reference 3), because the material employed
exhibited strain hardening and appeaers to have been reasonably isotropic
initially, as assumed in the theory, and because the investigation shows
evidence of having been very carefully carried out. The cooperstion of
Dr. Osgood and the National Bureau of Standards in supplying the
original data obtained In the investigation is gratefully acknowledged.

SYMBOLS
Q solid engle, used to describe orientation of
" glip plenes, steradians
B angular coordinate giving directlon of slip,
radlans c
o) normal stress - -
UL normal stress at which plastic deformation begins

Ors O17s Opry principal stresses, Or > Ort > 0T

T shear stress

T, shear stress at which plastic deformation begins

€ total normal strain
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plastic strain

principal plastic strains, correspondling in
direction to O1s Opps and OTTT» respectively

total shear strain

plagtic shear strain

- coordinates taken in the axlal, circumferential,

and radial directions of the cylinder,
respectively, and also used as subscripts in
connectlon with stress and strain to denote
particular components of these quantities

direction of normasl to slip plane and direction
of slip, respectively

characteristic shear function for materlal,
giving plastlic shear straln per steradlan of
slip—plane orientation per radilan of slip
direction as & functlon of shear stress

cosines of angles between x and 1,
v and 1, . . . 2z and 2 directions

coefficient of nth term in seriles expansion for F

function giving variation of plastic strain with
applled stress in uniaxisl compression or
tension, corresponding to nth term of serles

expansion for F

angle between slip—plane normal and polar
direction in polar coordinate system

Young's modulus for the material

gecant modulus for the materisl

FUNDAMENTALS OF TEE SLIP THEORY

According to the slip theory of plasticity {reference 1), plastic
action is caused by slip in unfavorably oriented graing. The strain
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assoclated with a given state of stress is determined by finding the
plagtic shear strain assoclated with slip in a given plane and a given
direction, resolving this plastic shear strain into plastic strains in
a convenlent flxed set of coordinates, and suming over all slip planes
and slip directions. The plastic shear strailn associated with planes
whose normals are included in the sclild angle d4Q about direction 1
(see fig. 1) and with slip directions included in the angle dp about
direction 2 1s given by

where F 1s a functlon depending only on the history of T1p, the shear

stress in the 2-direction which is acting on the plane perpendicular to
the l-axis. If the stress history is such that reverse slip does not
occur, F depends only on the highest-previous value of the shear—
stress component in question, which 1s the ilnstantansous value of the
shear—gtress component in the case of constant stress ratio and
continual loading.

The infinitesimal shear strain lis resolved into strains in the
standerd x, y, and 2z axes by means of the strain-transformstion
equations of the theory of elasticity, which may be written in the form

<

dey" = lx1lyo dyyp" i

= (lezye + Zyllxe)dyle"
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The total plastic strains in the standard axes thus becoms

N
' = / / lezng('rm)dn as

o [t e

in which the integration with respect to & extends over a hemisphere
and that with respect to B extends over 180°.

SRS

If the applied stresses are given in the standard coordinsate

system as oy, Ogs o o o Tyzs the shear stress 1s given by

Tiz = lxlzxgax + zyllyecy + 1z11lz00z + (Zx_]_zyg + Zyllxe)'l’xy

+ (lezzz * Zzlzx2)sz +’Qy1122 + Zzlzy2)7yz (%)

The total plastic strains can be determined from equations (3)
and (%) when the characteristic shear function F is known. .Thils func—
tion can be found from the tenslle or compresslve stress—satraein curve
(assumed in the theory to be idemtical) by the use of the following

equation:
T n
F 712) = i &n(%a - ) (5)
n=1 L

for Tip P4 I,
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The coefficients a, in equation (5) are determined by writing
the equation

= gg; anSn(éi) (6)

for a set of N different stress levels and solving them simultaneously.
In this equation, oy 1s the elastic limit as agcortalined from the

stress—strain curve, ¢" 18 the plastic strain corresponding to the
gtress level ¢, and the quantities g, are given in table 1 for five

stress levels above the elastic limit for the material.
EXPERIMENTAT, DATA AND PREVIOUS ARALYSES

In Osgood's investigation (reference 2), biaxial-tension tests
were made on five 248-T saluminum-elloy tubes of l%-—inch internal

dlameter, and 0.05-inch thickness. The nominal ratios of circumferential
to axiasl stress were O, 0.5, 1, 2, and «». The results were presented in
the form of two generalized stress—strain curves for each ratio of
stresses, namely, maximum shearing stress plotted agalnst maximum
shearing strain and octahedral shearing strese plotted agalnst
octahedral sheasring strain. It was found that in each type of plot the
data for stress ratios 0, 1, and « fell for practical purposes along

one curve, whereas the datae for stress ratios 0.5 and 2 fell along
another. In the plot of maximm shearing stress against maximum shearing
strain, the curve for stress ratlos 0.5 and 2 fell above the curve for
stress ratios O, 1, and «, whereas in the plot for octahedral shearing
gtress against octahedral shearing strain the reverse was true.

The fact that the generalized stress—strain curves for stress
ratios O and « coincide and that those for stress ratios 0.5 and 2
coincide 1s to be expected for an isotropic material. D. C. Drucker
(reference 4) has pointed out that the coincidence of the curve for
stress ratio 1 with those for stress ratios O and » is also to be
expected because the state of egual tension in the circumferential and
axial directions differs from the state of compression in the thickness
direction only by hydrostatic pressure, that is, a state of equal com—
pression in the three principal’directions. (Experiments have shown that
plastic action is relatively insensitive to hydrostatic pressure. ) He
also showed that by a sultable cholce of stress—intensity function a



NACA TN 2029 ) : T

result intermediste between the predictions of maximm-shear and
octahedral—shear theories 1s obtained and the stress—strain curves for
all five stress ratios can be brought into approximate coincidencs.

QUALITATIVE CONSIDERATION OF BIAXTAT TENSION ORN BASIS OF SLIP THEORY

The slip theory accounts for the data on the basis of entirely
different considerations. According to thls theory, when a material
is tested in uniaxial temsion, slip will first occur in those planes
which meke en angle of 45° with the direction of temsion. For
discussing plane orientations at a polnt, 1t is convenient to consider
a sphere surrounding the point. Any plane through the point can then
be represented by that radius of the sphere which is normal to 1%.

The normals to the planes msking an angle of 450 with the tensile
direction intersect the sphere along a circular line (see fig. 2). As
the tensile stress o increases beyond the elastic 1limit o, the lipe

widens into a zone, the limlting clrcles of which are given by the first
two roots of the equation

R I R
6—55111 T (7)

The zones containing the normals of the slip planes for tension in
the x— and y—directions, regpectively, together wlth the corresponding
directions of resolved shear stress are shown in figures 3(a) and 3(Db).
If the two stresses are equal and are applied simultaneously, as shown
in figure 3(c), the resolved shear stress becomes zero in location A,
but is equal to the value for o, &alone at location B, and for Oy

alone at location C. The area contalning the normals of the slip planes
in this case turns out, in fact, to be a zone related to the z—axis in
the same way the previously discussed zones were related to the x— and
y-exes. If due account is taken of the direction of the shear stress,
it becomes evident that the slmultaneous tensions oy = Oy = 0 are

equivalent to the compression ¢, = —0o, a result also derivable by the

addition of a hydrostatic pressure, as noted in the previous section.
The three stress states illustrated in figure 3 correspond to the
stress ratios O, 1, and ». Inasmuch ag the plastlic deformation in a
glven plane 1s assumed to be determined solely by the shear stress in
that plane, the slip theory predicts that wlth proper permmtation of
axes the relationship between applied stress and resulting strain is
the same for all three stress states; as previously noted, this
prediction was experimentally verified.
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If tensions o, and oy are unequal, a different situation

arises, which, for simplicity, is discussed in terms of the symbols for
principasl streas o1 > 01T > OTIT* Consider for example the case in

which op = 2UII’ Or1T E
slip will first occur at the seme value of ¢y as though -o7y were not

present. However, instead of occurring in all the planes whose normals
lie along the 45° circle, it will occur only in the planées whose normals
plerce the circle at points B and B! (see fig. 4), end, instead of

growing into a zone bounded by two parallel circles as In the case of
increasging uniaxisl tension, the area enclosing the slip-plane normals
will become roughly a pair of ellipses, as indicated in the figure, which
merge when op = 2077 = 207,. Figure 4 ghows that, because of the presence

of Orts fewer planes partlcipate in the plastic deformation then would

= 0. As the two stresses are increased in ratio,

participate if o alone were acting, so that the total plastic strain
is decreased by the presence-of oy7. Thus, the slip theory predicts

an elastic limit in agreement with that predicted by maximum-shear
theory, but the strains corresponding to stresses above the elastic
limit are determined not by the maximum value of the shear alone, but by
the total state of stresa. Flgure 5 indicates that Osgood's data verify
the reduction in strain due to the presence of the second stress but do
not give an elastic limit depending only on the larger stress as the
preceding discussion would lead one to expect:

A reason for this discrepancy 1s not difficult to find. Even aslde
from variations in materiasl properties, verification of the prediction
that the value of o7 corresponding to the elagtic 1imit for the

meterial is the same whether oy = O or = op Would be difficult by

experimental means because plastic deformation must be of some finite
magnitude to be experimentally evident., In rough approximetion the

elastic limit experimentally ohserved for Orq = 0 and for Opp = % or

will correspond to equsl areas of the reglons on the sphere containing

the normals to the slip planes in the two cases. Reference to figure k4
shows that the crlterion of equal areas lmplies that the elastic limit

o.
obgerved for o1 when oy = %-GI <5§'= 0.5 and 2) will be above that

i

L =0, 1, and w|, This result is verified
X

IT
on the average by the data in figure 5.

observed when o =0 <
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QUANTITATIVE TREATMENT OF BIAXTAL TENSION ON BASIS OF SLIP THEORY

The analysis of data in terms of the slip theory of plasticity
requires a knowledge of the uniaxlal stress—strain curve for the
material (the material is assumed to be isotropic). Osgood's
stress—strain data {reference 2) for the five stress ratios 0, 0.5, 1,
2, and « fall into two groups. Stress ratios 0, 1, and o correspond to
uniaxial stress, and stress ratios 0.5 and 2 correspond to essentially
the same state of combined stress. The analysls assumes the uniaxial
stress—strain curve to be glven and computes the plastic strains
corresponding to stress ratlo 0.5.

In figure 6, stress—etrain dats are given for stress ratlos o, 1,

0.
and «. For the cases of axlial tension g[ = O) and. circumferential
x

0 .
tension (-51 = oo) the stress 1s plotted against the corresponding
X .

o
strain. For the case (Ez = l) the equilvalent radilal stresses and
X

corresponding radial strains were computed on the basls of the assumptions
that volume does not change during plastic deformation and that hydro—
statlic pressure has no effect. The close correlation of the data
corregponding to uniaxial stress in the three principal directions is
evidence that the materlal used was probably very nearly isctropic.

. The stregs—straln date for the various stress ratlos, however, are
not equally rellable representatlqns of the uniaxial properties of the
material, The curves for stress ratlios 1 and « required the elimlnation
of the axial stress by a proper balancing of lnternal pressure and axial
compression on the tubular specimen, which elimination, as a practical
matter, could only be made approximately; moreover, small experimental

" errors occurred bhecause the state of cilrcumferential stress was not
entirely uniform over the thlckness of the tube. The curve for stress
ratio O was therefore chosen as the stress—strain curve for the
material, '

Before plastic strain can be computed, the characteristic shear
function for the material must be determined. The determination of the
characteristic shear function for the material required the solution of
equation (6) for the coefficlents a, and the substitutlon of the results

into equation (5). The elastic limit o7 for the material was taken
to be 36 ksi, and the plastic strains corresponding to the higher stress
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levels for which the quantities g, appearing in equation (6) have

been computed (table 1) were taken to be those glven in the following
table:

O’I Gn
o7,

1 0

1.10 .00015
1.25 . .00085
1.40 L0046
1.60 .0200
1.80 .0530

The substitution of the values found for the coeffilcients &, into
equation (5) resulted in the characteristic shear curve given in figure 7.

The plastic shear stralns corresponding to a glven state of stress
are determined by integrating over all orientations of slilp planes and
over all slip directions, as indicated in equations (3). The method
employed for these integrations was the numerical one described in
appendix C of reference 1. The followling table gilves the computed

plastlic stralns for the case or = 2UII, OryT = 0:

GI n € "

€
or I IT
1 0 o}
1.2 .00012 0
1.4 .00133 0
1.6 .0070 o}
1.8 .0193 o}

The values for GII" are known to be O becausde the state of stress is

equivalent, except for hydrostatic pressure, to pure shear in the I, III —
plane, The numerical computations did not, of course, give 0, dut

small negative numbers smounting in sach case to less than 1 percent of
the corresponding value for GI"; this result provides some indication

of the order of--accuracy of the numerical method employed.
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COMPARTSON WITH EXPERIMENT AND WITH OTHER THEORIES

For the sake of simplicity, the assumptlon is sometlimes made in
theorles of plesticlity that the materisl 1s Incompressible in the
elagtic as well ss In the plastic range. This assumption is rather
inaccurate in the reglon starting with the elastlic 1imit of the material
and extending somewhat above the yleld stress, whilch is the reglon to
which the considerations of the present paper are limited and the
rogion of principal Interest in many structural applications., Comparisons
wlll therefore be made with other theories only in the more accurate form
in which the straln is divided into an elastic part and a plastic part,
each of which 1s asgociated with the appropriate value of Poisson's
ratio.

Since the theories differ only in regard to the plastic part of the
gtrain, the usual mode of representation of results by means of plotting
stress againet total straln obscures the differences between the theories.
Consider, for example, two stress—etraln curves which correspond to a
dlfference of a factor 2 in the plastic strain. Near the elastic limit
the two curves are very close together because the plastlc strain is
only a small fraction of the total strain which is belng plotted. At
higher stresses, where the plastic strain is considerably larger than
the ‘elastic strain, the two curves are ordinarily still qulte close
together because in this reglon the slope 1s very smasll. Consequently, -
for a criticel comparison of theories, a plot glving the relation
between stress and plastic stralin is preferabls.

Such a plot 1s shown in figure 8. This figure compares the plastic
strain eI" as measured experimentally and as computed on the basis of

glip theory, octehedral—shear theory, and maximm-shear theory. The
experimentel results were computed from test data of reference 2 by
subtracting the elastic stralns from the measured total strains on the
bagis of the assumptions that in the elastic range Young's modulus -

1s 10.5 x 10 psi and Poissonts ratio 1s 0.305.
The results for octahedral-shear theory can be cbtained by use of
either Nadai's law or Laning's law (equations (30) and (33), respectively,

of reference 5). For biaxial tension at constant stress ratio these
laws can be shown to reduce to the followlng equations:

- Hedo)

€y’ = (é;"’%)ﬁﬁy"'%’gx) (9)
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where the secant modulus E; 1s taken as the slope of the line from the

origin to the point on the stress—strain curve (fig. 6) corresponding to
the stress level

o= vé;e + cye — 0x0y (10)
- —‘fg o1 (11)
when
op = 2071

There does not appear to be a generally accepted and self-—consistent
maximim—shear theory for polyaxlal stress—straln relations. However, the
speclal case o7 = 2077 = 20 turns out to be essentlally equivalent to

a state of pure shear, for the addition of a hydrostatic pressure equal
to -o gives oy = -oppyp =0, O = 0. Thus in this special case

maximm—shear theory meakes a definlte prediction of the blaxlal stress—
strain relations. From conslderations of symmetry, eg" = 0. To

find ep7", 1t is observed first of all that when the value of o is

given, LI and therefore by maximum-ghear theory ymax", is the same

for simple tenslon and for the stress state under consideration. On the
other hand, conslderation of the Mohr strain clrcles involved shows
that yp.," 18 (3/2)51" and 2€I s respectively, in the two stress states.

Consequently, the presence of the stress oyt = l op reduces eg" to

three—fourths of its value in simple tension.

Figure 8 shows that the octahedral—ghear theory underestimates and
the maximum-shear theory overestimates the plastic strain in the region
where these strains are of-a magnitude comparable with the elastic strains,
The prediction of the slip theory 1ls intermediate between those of
octahedral shear and meximum shear and is in excellent agreement with
the test data for stress ratio 0.5. The data for stress ratlo 2, which
might be expected to colncide with the data for stress ratlo 0.5, cannot
be regarded ag in good agreement with the slip theory. These data were
obtalned by applylng internal pressure alone to the tube and, on account
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of the finite thickness of the wall, actually correspond to a gtress
ratio of 2.06; however, thig does not appear to account for the :
discrepancy. Calculatlons based on octahedral—shear theory imply that
the plastic strains EI" for stress ratios 2 and 2.06 should differ

not more than a few percent, and it is therefore felt that the differences
between the experimental results for stress ratlos 0.5 and 2 noted in
figure 8 primarily represent scatter in the material properties. In any
event, the test data teken as a whole are in better agreement with the
slip theory than with either octahedral—ghear theory or maximmm-shear
theory. According to all three theories of plasticity, the transverse

plastic strain GII" 1s zero. As indicated in the table below, the

plastic strain computed from the data was always less than 0.001:

GII"
g_I v %y
L & = 0.5 7 = 2
1 0 0
1.2 -.17 x 1073 —.01 x 103
1.k -.19 —-.10
1.6 —-.4o -.10
1.8 -.90 -.90

The loading functlon proposed by Drucker (reference 4) has not
been consgidered in the present comparison because the specification of
loading function alone 1s not enough to determine plastic stress—strain
relations. '

CONCLUDING REMARKS

The slip theory of plasticity, which 1s derived from physical
considerations with respect to the mechanism of plastic deformation, has
previously been checked against experiments involving continuously
variable stress ratios. In the present paper the slip theory is shown
to be in good agreement with blaxlal-tensilon data involving constant
stress ratlos. The octahedral—shear and maximum—shear theories are

shown to be in poorer agresment with the test data.

Langley Aeronautical Laboratory
National Advisory Committee for Aeronsutics
Langley Alr Force Base, Va., November 10, 1949
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TABLE 1
CALCULATED g-VALUES
n/g) = A
<) L)
o/oy, & & &3 &y &
1.10 0.0311486 0.0020860 0.0001560 0.0000137 | ======---
1.25 1671619 .0281396 .0053115 .0010741 0.0002206
1.k0 .3744086 .10041)7 .0308275 .0099LL7 .0033785
1.60 .7211448 .2948256 .1354768 0651761 .033664%4
1.80 1.1965026 6448685 .3883228 287629 .1656213
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Figure |.- Slip-plane normal, |, and
direction of slip, 2, for typical
slip plane.
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Figure 2, - Zone of intersections of slip-plane
normals with unit sphere for simple tension.
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Figure 3.- Zones of intersections of slip-
plane normals with unit sphere.
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Figure 4.- Zones of intersections of slip-plane
normals with unit sphere when o; = 203, o,=0.
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Figure 3.- Experimental curve of largest principal
stress against largest principal strain for various
stress ratios. (Curve for stress ratio=1 is com-
pressive stress-strain curve in radial direction.)
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Figure 6.~ Stress-strain relations in principal directions.
(Curve plotted for axial tension only.)



=)

NACA TN 2029

0 2 4 5] 8

T

Figure 7 - Plot of characteristic shear
function of material.
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Figure 8.- Comparison of plastic-strain 1hepries with

experimental data.
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